so(10), type \(D^{1}_5\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.

Page generated by the calculator project.
g: D^{1}_5. There are 16 table entries (= 14 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Type k_{ss}: D^{1}_5
(Full subalgebra)
Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_3+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: D^{1}_4

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_4

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_3+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_3

Type C(k_{ss})_{ss}: 2A^{1}_1
Type k_{ss}: A^{1}_3

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{1}_2

Type C(k_{ss})_{ss}: 2A^{1}_1
Type k_{ss}: 2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_3
Type k_{ss}: 2A^{1}_1

Type C(k_{ss})_{ss}: 2A^{1}_1
Type k_{ss}: A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_3+A^{1}_1
Type k_{ss}: 0
(Cartan subalgebra)
Type C(k_{ss})_{ss}: D^{1}_5

There are 14 parabolic, 2 pseudo-parabolic but not parabolic and 0 non pseudo-parabolic root subsystems.
The roots needed to generate the root subsystems are listed below.
["parabolic","0", []],
["parabolic","A^{1}_1", [[1, 2, 2, 1, 1]]],
["parabolic","2A^{1}_1", [[1, 2, 2, 1, 1], [0, 0, 1, 1, 1]]],
["parabolic","2A^{1}_1", [[1, 2, 2, 1, 1], [1, 0, 0, 0, 0]]],
["parabolic","A^{1}_2", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0]]],
["parabolic","3A^{1}_1", [[1, 2, 2, 1, 1], [1, 0, 0, 0, 0], [0, 0, 1, 1, 1]]],
["parabolic","A^{1}_2+A^{1}_1", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, 0, 1, 0]]],
["parabolic","A^{1}_3", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, -1, 0, 0]]],
["parabolic","A^{1}_3", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [-1, 0, 0, 0, 0]]],
["parabolic","A^{1}_2+2A^{1}_1", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]],
["parabolic","A^{1}_3+A^{1}_1", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [-1, 0, 0, 0, 0], [0, 0, 0, 1, 0]]],
["parabolic","A^{1}_4", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, -1, 0, 0], [0, 0, 0, 0, -1]]],
["parabolic","D^{1}_4", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, -1, 0, 0], [0, 0, -1, -1, -1]]],
["parabolic","D^{1}_5", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [0, 0, -1, 0, 0], [0, 0, 0, 0, -1], [0, 0, 0, -1, 0]]],
["pseudoParabolicNonParabolic","4A^{1}_1", [[1, 2, 2, 1, 1], [1, 0, 0, 0, 0], [0, 0, 1, 1, 1], [0, 0, 1, 0, 0]]],
["pseudoParabolicNonParabolic","A^{1}_3+2A^{1}_1", [[1, 2, 2, 1, 1], [0, -1, 0, 0, 0], [-1, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]]
LaTeX table with root subalgebra details.
\documentclass{article}
\usepackage{longtable, amssymb, lscape}
\begin{document}
Lie algebra type: $D^{1}_5$. There are 16 table entries (= 14 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Let $\mathfrak g$ stand for the type of the regular subalgebra and $C(\mathfrak g)$ for the type of the centralizer. Let $r$ stand for the rank of $\mathfrak g$, let $r_c$ stand for the rank of the semisimple part of the centralizer, let $p$ stand for the number of positive roots of $\mathfrak g$, let $q$ stand for the number of positive roots of the centralizer, and let $m$ stand for the number of $A_1$ components (of all root lengths) of $\mathfrak g$. \begin{longtable}{cccccccc}
$\mathfrak g$ & $C(\mathfrak g)$& $p$ & $q$& $m$& $r$ & $c_r$ \\\endhead
$D^{1}_5$&$0$&$20$&$0$&$0$&$5$&$0$&\\
$A^{1}_3+2A^{1}_1$&$0$&$8$&$0$&$2$&$5$&$0$&\\
$D^{1}_4$&$0$&$12$&$0$&$0$&$4$&$0$&\\
$A^{1}_4$&$0$&$10$&$0$&$0$&$4$&$0$&\\
$A^{1}_3+A^{1}_1$&$A^{1}_1$&$7$&$1$&$1$&$4$&$1$&\\
$A^{1}_2+2A^{1}_1$&$0$&$5$&$0$&$2$&$4$&$0$&\\
$4A^{1}_1$&$0$&$4$&$0$&$4$&$4$&$0$&\\
$A^{1}_3$&$2A^{1}_1$&$6$&$2$&$0$&$3$&$2$&\\
$A^{1}_3$&$0$&$6$&$0$&$0$&$3$&$0$&\\
$A^{1}_2+A^{1}_1$&$A^{1}_1$&$4$&$1$&$1$&$3$&$1$&\\
$3A^{1}_1$&$A^{1}_1$&$3$&$1$&$3$&$3$&$1$&\\
$A^{1}_2$&$2A^{1}_1$&$3$&$2$&$0$&$2$&$2$&\\
$2A^{1}_1$&$A^{1}_3$&$2$&$6$&$2$&$2$&$3$&\\
$2A^{1}_1$&$2A^{1}_1$&$2$&$2$&$2$&$2$&$2$&\\
$A^{1}_1$&$A^{1}_3+A^{1}_1$&$1$&$7$&$1$&$1$&$4$&\\
$0$&$D^{1}_5$&$0$&$20$&$0$&$0$&$5$&\\
\end{longtable}
\end{document}